* Step 1: MI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: -(x,0()) -> x -(0(),s(y)) -> 0() -(s(x),s(y)) -> -(x,y) div(x,0()) -> 0() div(0(),y) -> 0() div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y)))) if(false(),x,y) -> y if(true(),x,y) -> x lt(x,0()) -> false() lt(0(),s(y)) -> true() lt(s(x),s(y)) -> lt(x,y) - Signature: {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(div) = {1}, uargs(if) = {1,3}, uargs(s) = {1} Following symbols are considered usable: {-,div,if,lt} TcT has computed the following interpretation: p(-) = [1] x_1 + [2] p(0) = [0] p(div) = [2] x_1 + [0] p(false) = [0] p(if) = [2] x_1 + [4] x_2 + [1] x_3 + [0] p(lt) = [2] p(s) = [1] x_1 + [8] p(true) = [0] Following rules are strictly oriented: -(x,0()) = [1] x + [2] > [1] x + [0] = x -(0(),s(y)) = [2] > [0] = 0() -(s(x),s(y)) = [1] x + [10] > [1] x + [2] = -(x,y) lt(x,0()) = [2] > [0] = false() lt(0(),s(y)) = [2] > [0] = true() Following rules are (at-least) weakly oriented: div(x,0()) = [2] x + [0] >= [0] = 0() div(0(),y) = [0] >= [0] = 0() div(s(x),s(y)) = [2] x + [16] >= [2] x + [16] = if(lt(x,y),0(),s(div(-(x,y),s(y)))) if(false(),x,y) = [4] x + [1] y + [0] >= [1] y + [0] = y if(true(),x,y) = [4] x + [1] y + [0] >= [1] x + [0] = x lt(s(x),s(y)) = [2] >= [2] = lt(x,y) * Step 2: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: div(x,0()) -> 0() div(0(),y) -> 0() div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y)))) if(false(),x,y) -> y if(true(),x,y) -> x lt(s(x),s(y)) -> lt(x,y) - Weak TRS: -(x,0()) -> x -(0(),s(y)) -> 0() -(s(x),s(y)) -> -(x,y) lt(x,0()) -> false() lt(0(),s(y)) -> true() - Signature: {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(div) = {1}, uargs(if) = {1,3}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(-) = [1] x1 + [1] p(0) = [2] p(div) = [1] x1 + [2] x2 + [1] p(false) = [0] p(if) = [1] x1 + [3] x2 + [1] x3 + [2] p(lt) = [0] p(s) = [1] x1 + [2] p(true) = [0] Following rules are strictly oriented: div(x,0()) = [1] x + [5] > [2] = 0() div(0(),y) = [2] y + [3] > [2] = 0() if(false(),x,y) = [3] x + [1] y + [2] > [1] y + [0] = y if(true(),x,y) = [3] x + [1] y + [2] > [1] x + [0] = x Following rules are (at-least) weakly oriented: -(x,0()) = [1] x + [1] >= [1] x + [0] = x -(0(),s(y)) = [3] >= [2] = 0() -(s(x),s(y)) = [1] x + [3] >= [1] x + [1] = -(x,y) div(s(x),s(y)) = [1] x + [2] y + [7] >= [1] x + [2] y + [16] = if(lt(x,y),0(),s(div(-(x,y),s(y)))) lt(x,0()) = [0] >= [0] = false() lt(0(),s(y)) = [0] >= [0] = true() lt(s(x),s(y)) = [0] >= [0] = lt(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 3: MI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y)))) lt(s(x),s(y)) -> lt(x,y) - Weak TRS: -(x,0()) -> x -(0(),s(y)) -> 0() -(s(x),s(y)) -> -(x,y) div(x,0()) -> 0() div(0(),y) -> 0() if(false(),x,y) -> y if(true(),x,y) -> x lt(x,0()) -> false() lt(0(),s(y)) -> true() - Signature: {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(div) = {1}, uargs(if) = {1,3}, uargs(s) = {1} Following symbols are considered usable: {-,div,if,lt} TcT has computed the following interpretation: p(-) = [1] x_1 + [0] p(0) = [0] p(div) = [2] x_1 + [9] x_2 + [0] p(false) = [0] p(if) = [8] x_1 + [2] x_2 + [1] x_3 + [0] p(lt) = [0] p(s) = [1] x_1 + [1] p(true) = [0] Following rules are strictly oriented: div(s(x),s(y)) = [2] x + [9] y + [11] > [2] x + [9] y + [10] = if(lt(x,y),0(),s(div(-(x,y),s(y)))) Following rules are (at-least) weakly oriented: -(x,0()) = [1] x + [0] >= [1] x + [0] = x -(0(),s(y)) = [0] >= [0] = 0() -(s(x),s(y)) = [1] x + [1] >= [1] x + [0] = -(x,y) div(x,0()) = [2] x + [0] >= [0] = 0() div(0(),y) = [9] y + [0] >= [0] = 0() if(false(),x,y) = [2] x + [1] y + [0] >= [1] y + [0] = y if(true(),x,y) = [2] x + [1] y + [0] >= [1] x + [0] = x lt(x,0()) = [0] >= [0] = false() lt(0(),s(y)) = [0] >= [0] = true() lt(s(x),s(y)) = [0] >= [0] = lt(x,y) * Step 4: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: lt(s(x),s(y)) -> lt(x,y) - Weak TRS: -(x,0()) -> x -(0(),s(y)) -> 0() -(s(x),s(y)) -> -(x,y) div(x,0()) -> 0() div(0(),y) -> 0() div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y)))) if(false(),x,y) -> y if(true(),x,y) -> x lt(x,0()) -> false() lt(0(),s(y)) -> true() - Signature: {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(div) = {1}, uargs(if) = {1,3}, uargs(s) = {1} Following symbols are considered usable: {-,div,if,lt} TcT has computed the following interpretation: p(-) = x1 p(0) = 0 p(div) = x1 + x1^2 p(false) = 1 p(if) = x1 + x1*x2 + x2 + x3 p(lt) = 1 + x1 p(s) = 1 + x1 p(true) = 0 Following rules are strictly oriented: lt(s(x),s(y)) = 2 + x > 1 + x = lt(x,y) Following rules are (at-least) weakly oriented: -(x,0()) = x >= x = x -(0(),s(y)) = 0 >= 0 = 0() -(s(x),s(y)) = 1 + x >= x = -(x,y) div(x,0()) = x + x^2 >= 0 = 0() div(0(),y) = 0 >= 0 = 0() div(s(x),s(y)) = 2 + 3*x + x^2 >= 2 + 2*x + x^2 = if(lt(x,y),0(),s(div(-(x,y),s(y)))) if(false(),x,y) = 1 + 2*x + y >= y = y if(true(),x,y) = x + y >= x = x lt(x,0()) = 1 + x >= 1 = false() lt(0(),s(y)) = 1 >= 0 = true() * Step 5: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: -(x,0()) -> x -(0(),s(y)) -> 0() -(s(x),s(y)) -> -(x,y) div(x,0()) -> 0() div(0(),y) -> 0() div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y)))) if(false(),x,y) -> y if(true(),x,y) -> x lt(x,0()) -> false() lt(0(),s(y)) -> true() lt(s(x),s(y)) -> lt(x,y) - Signature: {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))