* Step 1: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            -(x,0()) -> x
            -(0(),s(y)) -> 0()
            -(s(x),s(y)) -> -(x,y)
            div(x,0()) -> 0()
            div(0(),y) -> 0()
            div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            lt(x,0()) -> false()
            lt(0(),s(y)) -> true()
            lt(s(x),s(y)) -> lt(x,y)
        - Signature:
            {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(div) = {1},
          uargs(if) = {1,3},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {-,div,if,lt}
        TcT has computed the following interpretation:
              p(-) = [1] x_1 + [2]                    
              p(0) = [0]                              
            p(div) = [2] x_1 + [0]                    
          p(false) = [0]                              
             p(if) = [2] x_1 + [4] x_2 + [1] x_3 + [0]
             p(lt) = [2]                              
              p(s) = [1] x_1 + [8]                    
           p(true) = [0]                              
        
        Following rules are strictly oriented:
            -(x,0()) = [1] x + [2] 
                     > [1] x + [0] 
                     = x           
        
         -(0(),s(y)) = [2]         
                     > [0]         
                     = 0()         
        
        -(s(x),s(y)) = [1] x + [10]
                     > [1] x + [2] 
                     = -(x,y)      
        
           lt(x,0()) = [2]         
                     > [0]         
                     = false()     
        
        lt(0(),s(y)) = [2]         
                     > [0]         
                     = true()      
        
        
        Following rules are (at-least) weakly oriented:
             div(x,0()) =  [2] x + [0]                        
                        >= [0]                                
                        =  0()                                
        
             div(0(),y) =  [0]                                
                        >= [0]                                
                        =  0()                                
        
         div(s(x),s(y)) =  [2] x + [16]                       
                        >= [2] x + [16]                       
                        =  if(lt(x,y),0(),s(div(-(x,y),s(y))))
        
        if(false(),x,y) =  [4] x + [1] y + [0]                
                        >= [1] y + [0]                        
                        =  y                                  
        
         if(true(),x,y) =  [4] x + [1] y + [0]                
                        >= [1] x + [0]                        
                        =  x                                  
        
          lt(s(x),s(y)) =  [2]                                
                        >= [2]                                
                        =  lt(x,y)                            
        
* Step 2: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            div(x,0()) -> 0()
            div(0(),y) -> 0()
            div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            lt(s(x),s(y)) -> lt(x,y)
        - Weak TRS:
            -(x,0()) -> x
            -(0(),s(y)) -> 0()
            -(s(x),s(y)) -> -(x,y)
            lt(x,0()) -> false()
            lt(0(),s(y)) -> true()
        - Signature:
            {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(div) = {1},
            uargs(if) = {1,3},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                p(-) = [1] x1 + [1]                  
                p(0) = [2]                           
              p(div) = [1] x1 + [2] x2 + [1]         
            p(false) = [0]                           
               p(if) = [1] x1 + [3] x2 + [1] x3 + [2]
               p(lt) = [0]                           
                p(s) = [1] x1 + [2]                  
             p(true) = [0]                           
          
          Following rules are strictly oriented:
               div(x,0()) = [1] x + [5]        
                          > [2]                
                          = 0()                
          
               div(0(),y) = [2] y + [3]        
                          > [2]                
                          = 0()                
          
          if(false(),x,y) = [3] x + [1] y + [2]
                          > [1] y + [0]        
                          = y                  
          
           if(true(),x,y) = [3] x + [1] y + [2]
                          > [1] x + [0]        
                          = x                  
          
          
          Following rules are (at-least) weakly oriented:
                -(x,0()) =  [1] x + [1]                        
                         >= [1] x + [0]                        
                         =  x                                  
          
             -(0(),s(y)) =  [3]                                
                         >= [2]                                
                         =  0()                                
          
            -(s(x),s(y)) =  [1] x + [3]                        
                         >= [1] x + [1]                        
                         =  -(x,y)                             
          
          div(s(x),s(y)) =  [1] x + [2] y + [7]                
                         >= [1] x + [2] y + [16]               
                         =  if(lt(x,y),0(),s(div(-(x,y),s(y))))
          
               lt(x,0()) =  [0]                                
                         >= [0]                                
                         =  false()                            
          
            lt(0(),s(y)) =  [0]                                
                         >= [0]                                
                         =  true()                             
          
           lt(s(x),s(y)) =  [0]                                
                         >= [0]                                
                         =  lt(x,y)                            
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 3: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
            lt(s(x),s(y)) -> lt(x,y)
        - Weak TRS:
            -(x,0()) -> x
            -(0(),s(y)) -> 0()
            -(s(x),s(y)) -> -(x,y)
            div(x,0()) -> 0()
            div(0(),y) -> 0()
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            lt(x,0()) -> false()
            lt(0(),s(y)) -> true()
        - Signature:
            {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(div) = {1},
          uargs(if) = {1,3},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {-,div,if,lt}
        TcT has computed the following interpretation:
              p(-) = [1] x_1 + [0]                    
              p(0) = [0]                              
            p(div) = [2] x_1 + [9] x_2 + [0]          
          p(false) = [0]                              
             p(if) = [8] x_1 + [2] x_2 + [1] x_3 + [0]
             p(lt) = [0]                              
              p(s) = [1] x_1 + [1]                    
           p(true) = [0]                              
        
        Following rules are strictly oriented:
        div(s(x),s(y)) = [2] x + [9] y + [11]               
                       > [2] x + [9] y + [10]               
                       = if(lt(x,y),0(),s(div(-(x,y),s(y))))
        
        
        Following rules are (at-least) weakly oriented:
               -(x,0()) =  [1] x + [0]        
                        >= [1] x + [0]        
                        =  x                  
        
            -(0(),s(y)) =  [0]                
                        >= [0]                
                        =  0()                
        
           -(s(x),s(y)) =  [1] x + [1]        
                        >= [1] x + [0]        
                        =  -(x,y)             
        
             div(x,0()) =  [2] x + [0]        
                        >= [0]                
                        =  0()                
        
             div(0(),y) =  [9] y + [0]        
                        >= [0]                
                        =  0()                
        
        if(false(),x,y) =  [2] x + [1] y + [0]
                        >= [1] y + [0]        
                        =  y                  
        
         if(true(),x,y) =  [2] x + [1] y + [0]
                        >= [1] x + [0]        
                        =  x                  
        
              lt(x,0()) =  [0]                
                        >= [0]                
                        =  false()            
        
           lt(0(),s(y)) =  [0]                
                        >= [0]                
                        =  true()             
        
          lt(s(x),s(y)) =  [0]                
                        >= [0]                
                        =  lt(x,y)            
        
* Step 4: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            lt(s(x),s(y)) -> lt(x,y)
        - Weak TRS:
            -(x,0()) -> x
            -(0(),s(y)) -> 0()
            -(s(x),s(y)) -> -(x,y)
            div(x,0()) -> 0()
            div(0(),y) -> 0()
            div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            lt(x,0()) -> false()
            lt(0(),s(y)) -> true()
        - Signature:
            {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(div) = {1},
          uargs(if) = {1,3},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {-,div,if,lt}
        TcT has computed the following interpretation:
              p(-) = x1                  
              p(0) = 0                   
            p(div) = x1 + x1^2           
          p(false) = 1                   
             p(if) = x1 + x1*x2 + x2 + x3
             p(lt) = 1 + x1              
              p(s) = 1 + x1              
           p(true) = 0                   
        
        Following rules are strictly oriented:
        lt(s(x),s(y)) = 2 + x  
                      > 1 + x  
                      = lt(x,y)
        
        
        Following rules are (at-least) weakly oriented:
               -(x,0()) =  x                                  
                        >= x                                  
                        =  x                                  
        
            -(0(),s(y)) =  0                                  
                        >= 0                                  
                        =  0()                                
        
           -(s(x),s(y)) =  1 + x                              
                        >= x                                  
                        =  -(x,y)                             
        
             div(x,0()) =  x + x^2                            
                        >= 0                                  
                        =  0()                                
        
             div(0(),y) =  0                                  
                        >= 0                                  
                        =  0()                                
        
         div(s(x),s(y)) =  2 + 3*x + x^2                      
                        >= 2 + 2*x + x^2                      
                        =  if(lt(x,y),0(),s(div(-(x,y),s(y))))
        
        if(false(),x,y) =  1 + 2*x + y                        
                        >= y                                  
                        =  y                                  
        
         if(true(),x,y) =  x + y                              
                        >= x                                  
                        =  x                                  
        
              lt(x,0()) =  1 + x                              
                        >= 1                                  
                        =  false()                            
        
           lt(0(),s(y)) =  1                                  
                        >= 0                                  
                        =  true()                             
        
* Step 5: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            -(x,0()) -> x
            -(0(),s(y)) -> 0()
            -(s(x),s(y)) -> -(x,y)
            div(x,0()) -> 0()
            div(0(),y) -> 0()
            div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            lt(x,0()) -> false()
            lt(0(),s(y)) -> true()
            lt(s(x),s(y)) -> lt(x,y)
        - Signature:
            {-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^2))